Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2254926

ABSTRACT

Plant roots, due to a high content of natural antioxidants for many years, have been used in herbal medicine. It has been documented that the extract of Baikal skullcap (Scutellaria baicalensis) has hepatoprotective, calming, antiallergic, and anti-inflammatory properties. Flavonoid compounds found in the extract, including baicalein, have strong antiradical activity, which improves overall health and increases feelings of well-being. Plant-derived bioactive compounds with antioxidant activity have for a long time been used as an alternative source of medicines to treat oxidative stress-related diseases. In this review, we summarized the latest reports on one of the most important aglycones with respect to the pharmacological activity and high content in Baikal skullcap, which is 5,6,7-trihydroxyflavone (baicalein).


Subject(s)
Flavanones , Scutellaria baicalensis , Humans , Flavanones/pharmacology , Plant Extracts/pharmacology , Flavonoids/pharmacology , Antioxidants/pharmacology , Plant Roots
2.
Plant Cell Environ ; 46(6): 1873-1884, 2023 06.
Article in English | MEDLINE | ID: covidwho-2245130

ABSTRACT

Heightened by the COVID-19 pandemic there has been a global increase in urban greenspace appreciation. Indoor plants are equally important for improving mental health and air quality but despite evolving in humid (sub)tropical environments with aerial root types, planting systems ignore aerial resource supply. This study directly compared nutrient uptake preferences of aerial and soil-formed roots of three common houseplant species under high and ambient relative humidities. Growth and physiology parameters were measured weekly for Anthurium andreanum, Epipremnum aureum and Philodendron scandens grown in custom made growth chambers. Both aerial and soil-formed roots were then fed mixtures of nitrate, ammonium and glycine, with one source labelled with 15 N to determine uptake rates and maximum capacities. Aerial roots were consistently better at nitrogen uptake than soil roots but no species, root type or humidity condition showed a preference for a particular nitrogen source. All three species grew more in high humidity, with aerial roots demonstrating the greatest biomass increase. Higher humidities for indoor niches, together with fertiliser applications to aerial roots will support indoor plant growth, creating lush calming indoor environments for people inhabitants.


Subject(s)
Araceae , COVID-19 , Humans , Humidity , Pandemics , Plants , Soil , Nitrogen , Plant Roots
3.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2023944

ABSTRACT

Bupleurum chinense is an important medicinal plant in China; however, little is known regarding how this plant transcribes and synthesizes saikosaponins under drought stress. Herein, we investigated how drought stress stimulates the transcriptional changes of B. chinense to synthesize saikosaponins. Short-term drought stress induced the accumulation of saikosaponins, especially from the first re-watering stage (RD_1 stage) to the second re-watering stage (RD_2 stage). Saikosaponin-a and saikosaponin-d increased by 84.60% and 75.13%, respectively, from the RD_1 stage to the RD_2 stage. Drought stress also stimulated a rapid increase in the levels of the hormones abscisic acid, salicylic acid, and jasmonic acid. We screened 49 Unigenes regarding the terpenoid backbone and triterpenoid biosynthesis, of which 33 differential genes were significantly up-regulated during drought stress. Moreover, one P450 and two UGTs are possibly involved in the synthesis of saikosaponins, while some transcription factors may be involved in regulating the expression of key enzyme genes. Our study provides a reference for the cultivation of B. chinense and a practical means to ensure the quality (safety and effectiveness) of B. chinense for medicinal use, as well as insights into the modernization of the China Agriculture Research System.


Subject(s)
Bupleurum , Oleanolic Acid , Saponins , Bupleurum/genetics , Droughts , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/metabolism , Plant Roots/genetics , Saponins/metabolism , Terpenes/metabolism
4.
J Pharm Biomed Anal ; 215: 114793, 2022 Jun 05.
Article in English | MEDLINE | ID: covidwho-1895251

ABSTRACT

Glycyrrhiza uralensis is a popular medicinal plant worldwide. Its roots and rhizomes are used as the traditional Chinese medicine Gan-Cao. However, little is known on medicinal potential and chemistry of the other parts of the plant. In this work, the biological activities and chemical components of the roots, stems, leaves, and seeds of G. uralensis were investigated comparatively. The four parts exhibited different but noticeable biological activities. The chemicals in the four parts were globally characterized by liquid chromatography coupled with mass spectrometry (LC/MS) on a Thermo Vanquish UHPLC system connected to a Q-Exactive quadrupole Orbitrap mass spectrometer. By integrating molecular networking, compound spectral matching, MS2LDA-based substructure recognition, and reference standards comparison, a total of 1301 compounds were rapidly characterized. Three flavonoid C-glycosides were purified and their structures were identified by NMR spectroscopic analysis. Orthogonal partial least squares-discriminate analysis (OPLS-DA) further revealed 196 differential chemicals for the four parts. This work will promote the medicinal resource utilization of G. uralensis.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza , Plants, Medicinal , Chromatography, High Pressure Liquid , Glycyrrhiza uralensis/chemistry , Medicine, Chinese Traditional , Plant Roots/chemistry , Rhizome/chemistry
5.
Environ Sci Pollut Res Int ; 29(23): 33988-33998, 2022 May.
Article in English | MEDLINE | ID: covidwho-1626110

ABSTRACT

Organisms are increasingly exposed to ultraviolet (UV) rays of sunlight, due to the thinning of the ozone layer and its widespread use in sterilization processes, especially against the SARS-CoV-2 virus. The present study was conducted with the purpose of evaluating the damages of UV-A and UV-C radiations in Allium cepa L. roots. The effects of two different types of UV on some physiological, biochemical, cytogenotoxic, and anatomical parameters were investigated in a multifaceted study. Three groups were formed from Allium bulbs, one of which was the control group. One of the other groups was exposed to 254 nm (UV-C) and the other to 365 nm (UV-A) UV. Growth retardation effect of UV was investigated with respect to germination percentage, total weight gain, and root elongation, while cytogenotoxicity arisen from UV exposure was analyzed using mitotic index (MI) and chromosomal aberration (CA) and micronucleus (MN) frequency. Oxidative stress due to UV application was investigated based on the accumulation of malondialdehyde (MDA) and the total activities of superoxide dismutase (SOD) and catalase (CAT) enzymes. Also, anatomical changes induced by UV-A and UV-C were analyzed in root meristematic cells. UV treatments caused significant reductions in growth-related parameters. Both UV treatments caused a significant increase in MDA levels and induction of SOD and CAT enzymes in root meristematic cells. A decrease in MI and an increase in the frequency of MN and CAs were observed in root tip cells, indicating the cytogenotoxic effect of UV application. Anatomical damages such as epidermis cell damage, cortex cell damage, necrotic zones, giant cell nucleus, and indistinct transmission tissue occurred in cells exposed to UV. All of the physiological, biochemical, cytogenetic, and anatomical damages observed in this study were more severe in cells treated with UV-C compared to UV-A. This study suggested that UV exposure triggered growth inhibition, cytogenotoxicity, oxidative stress, and meristematic cell damages in A. cepa roots depending on the wavelength.


Subject(s)
Allium , COVID-19 , DNA Damage , Onions , Plant Roots , SARS-CoV-2 , Superoxide Dismutase
6.
Molecules ; 26(20)2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1480885

ABSTRACT

In our in vitro and in vivo studies, we used Acalypha indica root methanolic extract (AIRME), and investigated their free radical scavenging/antioxidant and anti-inflammatory properties. Primarily, phytochemical analysis showed rich content of phenols (70.92 mg of gallic acid/g) and flavonoids (16.01 mg of rutin/g) in AIRME. We then performed HR-LC-MS and GC-MS analyses, and identified 101 and 14 phytochemical compounds, respectively. Among them, ramipril glucuronide (1.563%), antimycin A (1.324%), swietenine (1.134%), quinone (1.152%), oxprenolol (1.118%), choline (0.847%), bumetanide (0.847%) and fenofibrate (0.711%) are the predominant phytomolecules. Evidence from in vitro studies revealed that AIRME scavenges DPPH and hydroxyl radicals in a concentration dependent manner (10-50 µg/mL). Similarly, hydrogen peroxide and lipid peroxidation were also remarkably inhibited by AIRME as concentration increases (20-100 µg/mL). In vitro antioxidant activity of AIRME was comparable to ascorbic acid treatment. For in vivo studies, carrageenan (1%, sub-plantar) was injected to rats to induce localized inflammation. Acute inflammation was represented by paw-edema, and significantly elevated (p < 0.05) WBC, platelets and C-reactive protein (CRP). However, AIRME pretreatment (150/300 mg/kg bodyweight) significantly (p < 0.05) decreased edema volume. This was accompanied by a significant (p < 0.05) reduction of WBC, platelets and CRP with both doses of AIRME. The decreased activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in paw tissue were restored (p < 0.05 / p < 0.01) with AIRME in a dose-dependent manner. Furthermore, AIRME attenuated carrageenan-induced neutrophil infiltrations and vascular dilation in paw tissue. For the first time, our findings demonstrated the potent antioxidant and anti-inflammatory properties of AIRME, which could be considered to develop novel anti-inflammatory drugs.


Subject(s)
Acalypha/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Disease Models, Animal , Edema/drug therapy , Edema/enzymology , Edema/pathology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , In Vitro Techniques , Male , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Rats , Rats, Wistar
7.
Molecules ; 26(2)2021 Jan 19.
Article in English | MEDLINE | ID: covidwho-1389465

ABSTRACT

The food sector includes several large industries such as canned food, pasta, flour, frozen products, and beverages. Those industries transform agricultural raw materials into added-value products. The fruit and vegetable industry is the largest and fastest-growing segment of the world agricultural production market, which commercialize various products such as juices, jams, and dehydrated products, followed by the cereal industry products such as chocolate, beer, and vegetable oils are produced. Similarly, the root and tuber industry produces flours and starches essential for the daily diet due to their high carbohydrate content. However, the processing of these foods generates a large amount of waste several times improperly disposed of in landfills. Due to the increase in the world's population, the indiscriminate use of natural resources generates waste and food supply limitations due to the scarcity of resources, increasing hunger worldwide. The circular economy offers various tools for raising awareness for the recovery of waste, one of the best alternatives to mitigate the excessive consumption of raw materials and reduce waste. The loss and waste of food as a raw material offers bioactive compounds, enzymes, and nutrients that add value to the food cosmetic and pharmaceutical industries. This paper systematically reviewed literature with different food loss and waste by-products as animal feed, cosmetic, and pharmaceutical products that strongly contribute to the paradigm shift to a circular economy. Additionally, this review compiles studies related to the integral recovery of by-products from the processing of fruits, vegetables, tubers, cereals, and legumes from the food industry, with the potential in SARS-CoV-2 disease and bacterial diseases treatment.


Subject(s)
Agriculture/methods , Drug Industry , Food Industry , Waste Products/economics , Agriculture/economics , Cosmetics/economics , Edible Grain , Food-Processing Industry/economics , Food-Processing Industry/methods , Fruit , Plant Roots , Plant Tubers , Vegetables
8.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1376839

ABSTRACT

Wogonin is one of the most active flavonoids from Scutellaria baicalensis Georgi (baikal skullcap), widely used in traditional Chinese medicine. It exhibits a broad spectrum of health-promoting and therapeutic activities. Together with baicalein, it is considered to be the one of main active ingredients of Chinese medicines for the management of COVID-19. However, therapeutic use of wogonin may be limited due to low market availability connected with its low content in baikal skullcap and lack of efficient preparative methods for obtaining this compound. Although the amount of wogonin in skullcap root often does not exceed 0.5%, this material is rich in wogonin glucuronide, which may be used as a substrate for wogonin production. In the present study, a rapid, simple, cheap and effective method of wogonin and baicalein preparation, which provides gram quantities of both flavonoids, is proposed. The obtained wogonin was used as a substrate for biotransformation. Thirty-six microorganisms were tested in screening studies. The most efficient were used in enlarged scale transformations to determine metabolism of this xenobiotic. The major phase I metabolism product was 4'-hydroxywogonin-a rare flavonoid which exhibits anticancer activity-whereas phase II metabolism products were glucosides of wogonin. The present studies complement and extend the knowledge on the effect of substitution of A- and B-ring on the regioselective glycosylation of flavonoids catalyzed by microorganisms.


Subject(s)
Flavanones/chemistry , Flavanones/pharmacology , Scutellaria baicalensis/chemistry , Animals , Biotransformation , Flavanones/isolation & purification , Flavanones/pharmacokinetics , Fungi/drug effects , Humans , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
9.
Molecules ; 26(13)2021 Jun 27.
Article in English | MEDLINE | ID: covidwho-1287269

ABSTRACT

We measured and studied the growth parameters and the qualitative and quantitative composition of the flavones of hairy roots of the Scutellaria genus: S. lateriflora, S. przewalskii and S. pycnoclada. Hairy roots were obtained using wild-type Agrobacterium rhizogenes A4 by co-cultivation of explants (cotyledons) in a suspension of Agrobacterium. The presence of the rol-genes was confirmed by PCR analysis. The hairy roots of the most studied plant from the Scutellaria genus, S. baicalensis, were obtained earlier and used as a reference sample. HPLC-MS showed the predominance of four main flavones (baicalin, baicalein, wogonin and wogonoside) in the methanol extracts of the studied hairy roots. In addition to the four main flavones, the other substances which are typical to the aerial part of plants were found in all the extracts: apigenin, apigetrin, scutellarin and chrysin-7-O-ß-d-glucuronide. According to the total content of flavones, the hairy roots of the studied skullcaps form the following series: S. przewalskii (33 mg/g dry weight) > S. baicalensis (17.04 mg/g dry weight) > S. pycnoclada (12.9 mg/g dry weight) > S. lateriflora (4.57 mg/g dry weight). Therefore, the most promising producer of anti-coronavirus flavones is S. przewalskii.


Subject(s)
Antiviral Agents/chemistry , Flavones/chemistry , Scutellaria/chemistry , Agrobacterium/growth & development , Agrobacterium/metabolism , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Chromatography, High Pressure Liquid , Flavones/isolation & purification , Flavones/pharmacology , Plant Cells/metabolism , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Roots/metabolism , Scutellaria/growth & development , Scutellaria/metabolism , Tandem Mass Spectrometry
10.
Viruses ; 13(4)2021 04 02.
Article in English | MEDLINE | ID: covidwho-1167761

ABSTRACT

The outbreak of SARS-CoV-2 developed into a global pandemic affecting millions of people worldwide. Despite one year of intensive research, the current treatment options for SARS-CoV-2 infected people are still limited. Clearly, novel antiviral compounds for the treatment of SARS-CoV-2 infected patients are still urgently needed. Complementary medicine is used along with standard medical treatment and accessible to a vast majority of people worldwide. Natural products with antiviral activity may contribute to improve the overall condition of SARS-CoV-2 infected individuals. In the present study, we investigated the antiviral activity of glycyrrhizin, the primary active ingredient of the licorice root, against SARS-CoV-2. We demonstrated that glycyrrhizin potently inhibits SARS-CoV-2 replication in vitro. Furthermore, we uncovered the underlying mechanism and showed that glycyrrhizin blocks the viral replication by inhibiting the viral main protease Mpro that is essential for viral replication. Our data indicate that the consumption of glycyrrhizin-containing products such as licorice root tea of black licorice may be of great benefit for SARS-CoV-2 infected people. Furthermore, glycyrrhizin is a good candidate for further investigation for clinical use to treat COVID-19 patients.


Subject(s)
Antiviral Agents/pharmacology , Glycyrrhizic Acid/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , COVID-19 , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus 3C Proteases/drug effects , Glycyrrhiza/chemistry , Humans , Peptide Hydrolases/drug effects , Plant Extracts/pharmacology , Plant Roots/chemistry , Vero Cells
11.
Int J Mol Sci ; 21(23)2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-965309

ABSTRACT

We describe the potential anti coronavirus disease 2019 (COVID-19) action of the methide quinone inhibitor, celastrol. The related methide quinone dexamethasone is, so far, among COVID-19 medications perhaps the most effective drug for patients with severe symptoms. We observe a parallel redox biology behavior between the antioxidant action of celastrol when scavenging the superoxide radical, and the adduct formation of celastrol with the main COVID-19 protease. The related molecular mechanism is envisioned using molecular mechanics and dynamics calculations. It proposes a covalent bond between the S(Cys145) amino acid thiolate and the celastrol A ring, assisted by proton transfers by His164 and His41 amino acids, and a π interaction from Met49 to the celastrol B ring. Specifically, celastrol possesses two moieties that are able to independently scavenge the superoxide radical: the carboxylic framework located at ring E, and the methide-quinone ring A. The latter captures the superoxide electron, releasing molecular oxygen, and is the feature of interest that correlates with the mechanism of COVID-19 inhibition. This unusual scavenging of the superoxide radical is described using density functional theory (DFT) methods, and is supported experimentally by cyclic voltammetry and X-ray diffraction.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Free Radical Scavengers/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Tripterygium/chemistry , Triterpenes/pharmacology , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Free Radical Scavengers/chemistry , Humans , Models, Molecular , Pentacyclic Triterpenes , Plant Roots/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Superoxides/metabolism , Triterpenes/chemistry , COVID-19 Drug Treatment
12.
Bioprocess Biosyst Eng ; 44(4): 653-660, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-917119

ABSTRACT

Large amounts of Morus alba L. (MA) roots are needed as the source of active stilbenes in the industrial production of traditional medicines and cosmeceuticals. A recent investigation demonstrated resveratrol and its derivatives to be promising anti-COVID-19 agents. However, conventional cultivation of MA does not meet the demand for its stilbenes, and root quality usually varies between crops. This study established the in vitro non-GMO root culture of MA and optimized the root density, precursor feeding, and elicitors for stilbene productivity. A root culture with optimal inoculum density (3 g/flask of 30 mL medium) accumulated mulberroside A, oxyresveratrol, and resveratrol at 18.7 ± 1.00 mg/g, 136 ± 5.05 µg/g, and 41.6 ± 5.84 µg/g dry weight (DW), respectively. The feeding of L-tyrosine shortened the time required to reach the stilbene productive stage. Root cultures co-treated with 200 µM methyl jasmonate and 2 mg/mL yeast extract accumulated the highest contents of mulberroside A (30.3 ± 2.68 mg/g DW), oxyresveratrol (68.6 ± 3.53 µg/g DW), and resveratrol (10.2 ± 0.53 µg/g DW). In summary, root culture is a promising and sustainable source of stilbenes for the development of health products and agents for further investigation as potential anti-COVID-19 agents.


Subject(s)
Morus , Plant Cells/metabolism , Plant Roots , Stilbenes/metabolism , Humans , Morus/cytology , Morus/metabolism , Plant Roots/cytology , Plant Roots/metabolism , SARS-CoV-2 , Stilbenes/therapeutic use , COVID-19 Drug Treatment
13.
Trials ; 21(1): 790, 2020 Sep 15.
Article in English | MEDLINE | ID: covidwho-760620

ABSTRACT

OBJECTIVES: We investigate the effects of Licorice (Glycyrrhiza glabra L.) root extract, an anti-inflammatory natural medicine, compared to the usual therapeutic regimen on clinical symptoms and laboratory signs in patients with confirmed COVID-19 that are moderately ill. TRIAL DESIGN: This is a single-center, open-label, randomized, clinical trial with parallel-group design. This study is being conducted at Shahid Mohammadi Hospital, Bandar Abbas, Iran. PARTICIPANTS: Both male and female patients with ≥18 years of age (≥ 35 kg of weight), admitted at the Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas for treatment, screened for the following criteria. INCLUSION CRITERIA: 1. Confirmed diagnosis of SARS-CoV-2 infection (via polymerase chain reaction [PCR] and/or antibody test). 2. Presenting as moderate COVID-19 pneumonia (via chest computed tomography (CT) and/or X-ray) requiring hospitalization. 3. Hospitalized ≤48 hours. 4. Signing informed consent and willingness of study participant to accept randomization to any assigned treatment arm. EXCLUSION CRITERIA: 1. Underlying diseases, including chronic heart disease, chronic hypertension, severe renal failure, severe liver failure, and thyroid disorders. 2. Severe and critical COVID-19 pneumonia. 3. Use of warfarin, selective serotonin reuptake inhibitors (SSRIs), monoamine oxidase inhibitors (MAOIs), diuretics, corticosteroids, and antiarrhythmic drugs. 4. Treatment with Investigational and antiviral therapy in a clinical study within one month before randomization. 5. History of allergy to Licorice. 6. Pregnancy and breastfeeding. INTERVENTION AND COMPARATOR: Intervention group: The standard treatment regimen for COVID-19 along with a Licorice-based herbal preparation (D-Reglis ®, Irandarouk Pharmaceutical Company, Iran) at a dose of 760 mg three times a day for a period of seven days. CONTROL GROUP: The standard treatment for COVID-19 based on the Iranian Ministry of Health and Medical Education's protocol for a period of seven days. MAIN OUTCOMES: The recovery rate of clinical symptoms, including fever, dry cough, and tiredness, as well as paraclinical features, including thrombocytopenia, lymphocytopenia, and C-reactive protein, are evaluated as primary outcomes within seven days of randomization. Time to improvement of clinical and paraclinical features and length of stay in a hospital, along with the incidence of adverse reactions are also evaluated as the secondary outcomes within seven days of randomization. RANDOMIZATION: An electronic table of random numbers will be used to allocate the included participants into either control or intervention groups (in a 1:1 ratio) using the simple randomization method. BLINDING (MASKING): This is an open-label trial without blinding and placebo control. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): A total of 60 participants randomizes (30 patients allocated to the intervention group and 30 patients allocated to the control group). TRIAL STATUS: The protocol is Version 1.0, May 31, 2020. Recruitment began July 30, 2020, and is anticipated to be completed by October 30, 2020. TRIAL REGISTRATION: This clinical trial has been registered in the Iranian Registry of Clinical Trials (IRCT). The registration number is "IRCT20200506047323N2", https://www.irct.ir/trial/47990 . The registration date is 31 May 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Coronavirus Infections , Glycyrrhiza , Pandemics , Plant Extracts , Plant Roots , Pneumonia, Viral , Adult , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Drug Monitoring/methods , Female , Hospitalization , Humans , Male , Plant Extracts/administration & dosage , Plant Extracts/adverse effects , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/etiology , Pneumonia, Viral/physiopathology , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL